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INTRODUCTION

Laser Raman spectroscopy can be used for in situ analysis of corrosion product
films on metal surfaces in gaseous and aqueous environments (1). The technique can
provide quick and unambiguous identification of compounds present in surface films
as thin as 50 R (2). Since water and most gases give very weak Raman spectra, there
is 1ittle spectral interference by the corrosive environment, and metal samples can
be examined undisturbed while corrosion proceeds.

In order to identify compounds resulting from metal oxidation it is, of course,
necessary to have spectra of the pure compounds available for reference. There can
be considerable variation in the intensity of Raman scattering from one compound to
another. For in situ Raman spectroscopy to be a useful technique in the study of
thin corrosion films, the corrosion products must have reasonably strong spectra.

Very few spectra of structural metal oxides have been published, so the first step
in such a study must be to record spectra of the compounds of interest.

Iron is by far the most important metal for corrosion research. The thin oxide
films it forms in most environments allow its use under nearly all conditions imagin-
able; however, the composition of such films is not well understood. There is experi-
mental evidence evidence that the products of iron oxidation in air and in pure oxygen
are FeO, Fe;04, a-Fe,0;, y-Fe,0;, a-FeOOH, and y-FeOOH (3-7). The products of aqueous
corrosion have been reported as Fe;0,, y-Fe,03, a-FeOOH, and y-FeOOH (8-11). To use
Raman spectroscopy to analyze surface filme on iron, spectra of these compounds are
required but only that of a-Fe,0; is available in the literature (12). In this study,
we have recorded Raman spectra of polycrystalline samples of the above named iron com-
pounds and used them to identify corrosion product films to demonstrate the capability

of this experimental technique in characterizing oxide films on iron surfaces.




EXPERIMENTAL

Several oxides of iron are readily available as reagent grade powders. Ferrous

oxide, FeO, was purchased from Pfaltz and Bauer, Inc., Fe3;0,, from Amend Drug and

Chemical Company, and o-Fe;03;, from Alfa Products, Inc.

Crystalline a-FeOOH was precipitated by hydrolysis of 0.1 M ferric oxalate solu-

tion at the initial pH of 6.5 (adjusted by the addition of 1 M NaHCO; solution) (13,14).

The solution was held at 100°C for 45 minutes and allowed to cool. The resulting
precipitate was washed with distilled water, separated from the solution by centri-
fugation, and dried at room temperature.

Hydrolysis of a ferrous chloride solution formed y-FeOOH. A solution of 20 g
FeCl,+4H,0 in 500 ml of water was added to 100 ml of 2 M hexamethylenetetramine solu-
tion, giving a blue-green Fe(OH), precipitate. To this was added 100 ml of 1 M NaNO,
solution and the mixture was held at 60°C for three hours (15,16). After cooling,
the rust-colored precipitate was removed by filtration, washed with water, and dried
at 100°C. The identity and purity of the compounds synthesized were confirmed by
their infrared absorption spectra (17).

Raman spectra were recorded with a Spex Industries Model 1401 double mono-
chromator using a photon counting detection system. A Coherent Radiation Labora-
tories Model 52 argon ion laser was used as the excitation source. Both the 488.0
and 514.5 nm wavelength laser lines were used and the power at the sample was approxi-
mately 500 mW. In the sample compartment of the spectrometer, the ion compounds, in
the form of KBr-iron oxide pellets, were held at a 20° angle from the vertical laser
beam. The angle of incidence of the beam has a strong effect on the intensity of
the Raman scattered light collected from a flat, opaque surface, so the angle was
chosen to give the most intense spectra possible (2). To examine surface films on
Armco iron samples, the same arrangement was used. Flat, rectangular iron samples

were held at the same 20° angle from the incident beam.




Armco iron samples were mechanically polished and washed with distilled water

before being placed in a preheated laboratory furnace. After high temperature ex-
posure for a specified time, the samples were allowed to cool to room temperature

and Raman spectra of their surfaces were recorded.
;

RESULTS AND DISCUSSION

In addition to identifying specific compounds, vibrational Raman spectra can
be used to identify different crystalline forms of the same compound. This is a
valuable asset in the study of iron oxidation because nearly all the oxides of
iron can exist as two or more polymorphs. The spectra of the two most common forms
of FeOOH are shown in Figure 1. Although their chemical compositions are the same,
different crystal structures and, therefore, different bonding and symmetry cause
very different Raman spectra. The strong bands at 397 (a-FeOOH) or 252 cm ® (y-FeQOH)
immediately identify the two oxyhydroxides; no other iron oxide has been found to
have bands at these positions.

The Raman bands observed from iron oxides are listed in Table I. As shown in
Figure 2, the spectra recorded from FeO and Fe;0, samples are identical. The samples
consist of two distinct compounds, as confirmed by their X-ray diffraction patterns,
but the spectra are the same. It may be that the vibrations which cause Raman bands
in Fe3;0, are due to Fe-0 bonds which are nearly identical to those of Fe0, but we
believe a more likely explanation is that the Fe0, which is unstable at temperatures
below 570°C (18), is decomposed by the laser. The problem of sample decomposition
is a common one when opaque samples are examined using relatively intense laser ex-
citation. Visible 1light is strongly absorbed by black FeO, and heating due to the
absorption of the excitation beam may transform it into Fe;0. and Fe, the stable
species at room temperature. Both Fe;0. and FeO are black and present problems with
decomposition in the laser beam. After a period of exposure, spectral intensity de-

creases and the surface of a pellet of either compound may be visibly changed. The
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Decomposition due to the excitation beam seems to be less of a problem with the
red-brown compounds, a- and y- FeQOH and «- Fe,0;. Probably because decomposition

is slower and absorption is less, the red-brown compounds give more intense spectra

than Fe;0,. The difference in spectral intensity is demonstrated in Figure 3, which
shows the spectrum of a mixture of 90% Fe;0. and 10% a-Fe,0; by weight. In spite

of the concentration difference, the bands due to ferric oxide, a-Fe,0;, are as
strong as those of Fe;0,. Because of the wide variation in spectral intensities
among these compounds, it is not possible to determine exactly a single minimum
concentration necessary to observe the spectrum of a minor component in a mixture.

As 1ittle as 5% oa-Fe,0; can be identified in Fe;0, but, in a mixture with Fe;0. as
the minor component, at least 30% Fe;0, is required before it can be seen in a-Fe,0;.
The intensities of the FeOOH spectra are midway between Fe;0, and a-Fe;0., so their
minimum detectable concentrations are between 5 and 30%.

Due to the simplicity and relatively large spacing of bands in the Raman spectra
of iron oxides, identification of compounds in a mixture is not difficult. Unlike
the broad, overlapping bands of infrared spectra of these compounds (19), the rela-
tively narrow Raman bands allow immediate identification of compounds in a mixture.

As an example of the ability of Raman spectroscopy to characterize corrosion
product films on iron surfaces, we have examined polished Armco iron plates which
were oxidized in air in a laboratory oven. Spectra resulting from oxidation at
250°C are shown in Figure 4. The Raman spectra identify the surface film as Fe.0,
and o-Fe,0;. The Fe;0, bands at 616 and 663 cm ' can be seen in all three spectra,
while at first only the strongest Fe,0; bands can be seen. After 217 hours of ex-
posure all seven bands of a-Fe,0; are visible. Bands due to both compounds increase

in intensity throughout the exposures, indicating that both the Fe;0. and x-Fe,0:

layers are thickening.

=
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Raman spectra of surface films as thin as 50 Z on a metal surface have been
reported (2), but the minimum film thickness r~-=ssary for compound identification
depends on the Raman scattering strength of the film. After oxidation under condi-
tions similar to those reported here, Poling (19) found an oxide film thickness of
approximately 500 R for a 50 hour exposure at 250°C. An o«-Fe,0; film of 100-200 R
is probably necessary as a minimum before spectra useful for identification can be
obtained with a single scan; for a thinner film the bands are not discernible above
the noise. For other compounds, the minimum film thickness can vary greatly, depend-

ing on Raman scattering characteristics.

CONCLUSIONS

Raman spectra of the oxides of iron can be obtained with little difficulty
using conventional instrumentation. The spectra can be used to identify the compounds
and to specify which polymorphs of the compounds are present in thin films on iron
surfaces. Spectra of thin surface films are identical to those of the pure compounds
comprising the films.

There is considerable variation in intensity of Raman scattering from these
oxides. The black compounds, Fe0 and Fe;0,, give weak spectra, whereas those that
are lighter in color, a-Fe,0;, a-FeOOH, and y-FeOOH, give stronger spectra. Decomposi-
tion of samples in the Taser beam is a problem with Fe0 and Fe;0, and, possibly, the
use of techniques to minimize decomposition such as rotating the sample or using
different wavelength excitation might give stronger spectra. These two oxides have
been found to give identical spectra. While the reason for this is not known, it
is proposed that the Fe0 is decomposing in the laser beam to give the more stable

FQ;Ou-
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TABLE I

Frequencies Of Iron Oxide Raman Bands

Compound
a-FeOOH goethite
y-FeOOH lepidocrocite
Fe0 wiistite
Fe30, magnetite
a-Fe,0; hematite

298
252
616
616

227
501

Band Positions (cm !)

397
380
663
663

245
612

414

293

474

298

414




FIGURE CAPTIONS

@ Figure 1 Raman spectra of o- and y-FeOOH in KBr pellets. The apparent
| band marked with an asterisk is a grating ghost.
\

Figure 2 Raman spectra of reagent grade FeO, Fe;0,, and a-Fe,;0; in KBr
pellets. Features marked with an asterisk are due to grating
ghosts.

Figure 3 Raman spectrum of a mixture of 90% Fe;0, and 10% a-Fe,0; by weight

in a KBr pellet.

Figure 4 Raman spectra of the surface of Armco iron oxidized in air at 250°C
for 50, 217, and 380 hours. Full scale on the 50 and 217 hour
spectra is 1000 counts/sec., for the 380 hour spectrum it is
3000 counts/sec.
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